
Synthesised Sound &

Synthesised Composition

COMPOSING ELECTRONIC MUSIC WITH
COMPUTER ASSISTED COMPOSITION

Master’s thesis in music theory: music technology

Magnus Bugge

Norwegian Academy of Music — Spring 2014

Abstract

This is a master’s thesis concentrated around the con-
struction of a suite of digital signal processing routines
programmed in Max, with the purpose of composing,
or aiding composition of electronic music. The routines
are synthesis models operated by arbitrary generated
numbers. Sounds produced are used in composition
of acousmatic (fixed media) electronic pieces. Further,
the processes is evaluated to see if, how and why the
composition of electronic music can benefit from be-
ing crossed with computer assisted composition. The
project is set in an academic context using artistic re-
search as a method to overview, document, and reflect
over the project.

Keywords: Algorithm, artistic research, computer assisted
composition, digital audio, DSP, generative music, Max, ran-
dom numbers, visual programming.

Acknowledgements

For contributions in various ways, I would like to ex-
press my gratitude towards my supervisor prof. emer.
Tore Simonsen, the librarians at the Norwegian Academy
of Music, my friends in SkRR, Andrew Hill, Lars Erik
Sparby, and everyone at Notam—Norwegian center for
technology in music and the arts.

Contents

I Introduction 8

1 About this thesis 9
1.1 Research questions . 9
1.2 Author’s background . 9
1.3 Purpose of thesis . 10
1.4 Theory . 10
1.5 Research tools . 11
1.6 Methodology . 11
1.7 Thesis structure . 11

2 Presentation of subject 12
2.1 Relevant terms . 12

2.1.1 Computer . 13
2.1.2 Assistance . 13
2.1.3 Algorithm . 13
2.1.4 Composition . 14
2.1.5 Combined: computer assisted algorithmic composition 14
2.1.6 Music technology . 15

2.2 Computer music and software . 16
2.2.1 DSP, CAC, and environments 17
2.2.2 Synthesised sound and synthesised composition 17

2.3 The problem . 18

II History of computer assisted composition 20

3 Early history of computer assisted composition 20
3.1 General historical context . 21
3.2 Pioneering projects . 22

3.2.1 Machine to Compose Music . 22
3.2.2 Combination Random-Probability System 23
3.2.3 Banal Tunemaker . 24
3.2.4 Musikalisches Wúrfelspiel . 24
3.2.5 Lejaren Hiller and the Illiac Suite 26

4 Four examples of newer approaches 27
4.1 Stochastic sound & stochastic composition 27
4.2 Style emulation . 30
4.3 The pragmatic approach in spectral music 30

5

4.4 Autonomous systems . 32

III Method 34

5 Artistic research 35
5.1 How artistic research was used . 36

6 Systematic experimental programming 38

7 Software 39
7.1 Max . 39
7.2 Other software tools . 40

IV Programming — composing 41

8 Matrise 41
8.1 Programming Matrise . 42

8.1.1 Synthesiser . 42
8.1.2 Pulse generators and reverbs 44
8.1.3 Sigmoid soft clipper . 45

8.2 Sound results . 46

9 Matrise redux 47
9.1 Programming Matrise redux . 47

9.1.1 Oscillator frequencies . 47
9.1.2 Variable amplitudes . 48
9.1.3 The matrix . 48
9.1.4 Output . 49

9.2 Sound results . 50

10 Dronetool 50
10.1 Programming Dronetool . 50
10.2 Sound results . 51

V Reflection 52

11 Audio as music — Max for composition 52
11.1 The concept of a Max patch . 54

12 Random numbers as data source 54

6

13 The actual music 56
13.1 Lack of controllerism . 56
13.2 Musicscapes — sound art . 56
13.3 Time and form . 58

13.3.1 Real time . 58
13.3.2 Working with form . 58

14 Finding sounds — objet trouvé? 59

15 The future of CAC 60

VI Conclusion 61

16 Answering research questions 61
16.1 Main research question . 61
16.2 Secondary research question . 62

17 Application of method 62

18 Synthesised Sound & Synthesised Composition 64

VII Appendix 66

19 Bibliography 66

20 Sound examples 69

21 File list 70

22 Attachments 71

7

Part I

Introduction

Can machines compose music? This is the classic opening line in texts about com-
puter assisted composition. The answer to this should be obvious by now. Yes,
they can. It is far more interesting to ask how we can use machines to compose
music. In this thesis I document and reflect upon my own approach to CAC (com-
puter assisted composition), to use visual programming as a tool for composing
electronic music. The thesis is one out of three parts that together constitutes the
master’s. The two other parts is a collection of programming examples and a set of
sound files, which can be found on the websites github.com and bandcamp.com.1

Both the programming examples and the sound files are also presented on the
DVD accompanying the paper version of the thesis.

Programming examples downloads here: http://github.com/magnusbugge/
SSSC/archive/master.zip2

Sound files streams or downloads here: http://magnusbugge.bandcamp.com/
album/sssc

1The source code is protected under GNU GENERAL PUBLIC LICENSE, meaning that it can be
downloaded, modified, and shared, as long as derived works uses the same license. The sound files
are considered the author’s compositions and are licensed under a standard TONO/NCB-contract.

2To visit the Github repository, use this link: http://github.com/magnusbugge/SSSC

8

1 About this thesis

1.1 Research questions

As a point of departure for the thesis, there are specified two, a main and a sec-
ondary, research questions. I use the term point of ‘departure due’ to the explo-
rative nature of the project. From beginning to end I was always looking for unex-
pected and possibly interesting observations. The main research question is also of
an open character, not limiting itself to any specific ways of answering it. I believe
that while working with an attitude of this kind is a potentially weak practice in
many scientific inquires, it is a natural way to explore a topic as an artist using
practice-based, artistic research. The research questions are:

• Main question: How may computer assisted composition assist or stimulate the
composition of electronic music?

• Secondary question: ‘Where’ in computer assisted composition is the artwork? Is
it in the code (computer program), in the music composed, or ‘somewhere else’?

The way the main question is asked, a natural approach to finding an answer is
to try it—to compose electronic music using computer assisted composition. As
for the secondary question, the idea is that the answer (although this question’s
answer is a matter of definition) to this should be enlightened during the work
with the main question.

My approach in researching this subject is identifying—or establishing—a def-
inition and understanding of the subject based on observation and reflection of
selected parts of the available discourse,3 followed by my own artistic take on the
subject—including a thoroughly and practice based documentation in the thesis,
and, at last a reflective part considering my own and others findings.

1.2 Author’s background

It should be mention that I am not a composer in the typical definition of the word.
I do not have a degree in composition, although I have taken composition courses

3There are, however, no scientific discourse theory/analysis applied. The discourse term is here
used as a unifying word for all the literature, music, computer code, experiments, and general
culture built up around CAC from the 1950s up until now, but also the history of algorithmic and
procedural composition that goes hundreds of years back in time.

9

as part of my education. My interest for computer assisted composition stems
from a desire to work with digital audio, music theory, and computers, more than
it stems from a wish to ‘compose’ music (whatever ‘compose’ means).

1.3 Purpose of thesis

For the master’s student there are several sides of writing and working with a mas-
ter’s thesis. It is the master’s itself—the product, and it is the process—the expe-
rience, the learning. The thesis is also useful to me on a personal and professional
level, giving me valuable training in working with music, sound, programming,
text, and research. A master’s is of course education, with the purpose of reaching
a high level of expertise within a field.

Also, with this master’s thesis I hope to be able to convey an understanding
of what CAC is, and what it may be: to demystify the use of CAC. CAC often
brings up the debate about ‘heart’ and ‘soul’ in music, which are seemingly used as
metaphors for interpretable human quality. David Cope’s colleagues nicknamed
him ‘The Tin Man’ after the Wizard of Oz character, since they both supposedly
had no heart [Bli10]. This paper tries to show that CAC simply represents another
approach to making music. Creativity, hard manual labor, and genuine creation is
still required to be able to make high quality music, no matter how computers are
involved.

1.4 Theory

There is a relatively large amount of articles and books written on CAC. Much of
the available material is practice based research written by composers that have
experimented with CAC. There are also a number of musicologists who have writ-
ten reflections and reviews on the subject, both in general and for specific works. I
have used a selection of references to my aid in building up a useful background
section for the thesis. I believe that by presenting and discussing the works that I
do, most readers should be able to achieve a sufficient base of knowledge of CAC,
and be able to set the rest of the thesis in context, including potential readers with
little or no knowledge of the subject.

10

1.5 Research tools

The project is a practice based research project, meaning there is little or no inquiry
or data collecting. The main tool for deriving information is working with the Max
environment, the generation of audio based upon this, and my own observations
and reflections during and afterwards programming.

1.6 Methodology

The methodological approach in the project is in the field of artistic research. A
procedural course of action that I have called systematic experimental programming
is used to construct composition programs, which are used for composing and
evaluated.

1.7 Thesis structure

The thesis outline is of course printed in the table of contents in the preamble, but
I’ll include a short paragraph here on why it is organised as it is. There are, exclud-
ing the appendix, six chapters in the text. These chapters are paired two by two
(illustrated in the table below), based on three major processes in the project: iden-
tification, where the subject is defined, explored, and evaluated; execution, which
features my take on the subject, and, as an artist trying to create something of my
own, while still keeping a professional distance to my work; and contemplation,
the reflection and observation done around both my own work and the concept
itself.

Identification Execution Contemplation
Introduction History Method Programming Reflection Conclusion

When describing Max programming, Max-objects are written in a monospaced
font, like this: object, and MSP-objects the same way, but with a tilde sign after
(like they are written in Max), like this: object∼. Dates are written in the ISO
8601 date format YYYY-MM-DD. For the pdf using reader, urls, all referring to
figures; chapters; and references, table of contents, footnotes, etc are clickable.

11

2 Presentation of subject

I define CAC as programming (instructing) a computer to execute composition
related tasks, primarily in order to generate arbitrary4 musical material. There are
not necessarily an obvious definition of what is to be considered a composition
related task, but in general, the use of conventional notation software and DAWs
falls outside the field of CAC—there are in most cases some sort of programming
language or programming environment involved, of which may or may not be
specialised for working with music in terms of MIDI, digital audio, or other forms
of inner/inter-application music communication.

CAC commonly relies on receiving some sort of data and processing this data
into use for musical purposes. The data used may be generated internally—with
an algorithm, or imported, converted, and scaled from some other digital or ana-
logue source (like musical notes or sound, but also various sensor data, weather
and space, stocks, etc). The mapping concept is a crucially important feature of
CAC. The human decision of which data shall be mapped to which parameter,
how the data is to be used, has a potentially much higher influence on the musical
output than the data used. Though the data may appear to be music, sensor read-
ings, or whatever, it is of course always numbers, or something else disguised as
numbers. Seen from the computer, our interpretation of the data is just a metaphor
for numerical information. I found keeping this thought in my head while working
with the project useful—it helped me understand the computer, and, in a strange
way helped me understand why the computer sometimes did not understand me.

2.1 Relevant terms

It is useful to make some general reflections around a few central terms before
starting on the main body of the text. Four important words are ‘computer’, ‘assis-
tance’, ‘algorithm’ and ‘composition’. These words are interesting separately and
in context of each other.

4Arbitrary as in random, but within a predictable range.

12

2.1.1 Computer

What is actually a computer, and what was a computer in the 50s? Though the
difference in technology and power in todays computers and the ones of the 50s are
of huge contrast, the definition of the device itself remains reasonable. According
to the Oxford online dictionaries, a computer is:

an electronic device which is capable of receiving information (data) in
a particular form and of performing a sequence of operations in accor-
dance with a predetermined but variable set of procedural instructions
(program) to produce a result in the form of information or signals.
[Oxf13]

The ability to receive and interpret data is a crucial feature, but it should be added
that the computer is programmable, which I define as that the interpretation of
data is modifiable by the user.

2.1.2 Assistance

The word assistance is well defined by the same source: ‘the action of helping some-
one by sharing work’ [Oxf13]. In the context of CAC, this definition helps to un-
derstand how the process is actually conducted. The computer will not be able to
take the place of the composer, it is an assistant who will share the most difficult
and ponderous tasks.

2.1.3 Algorithm

Much of the works within the category of CAC is also CAAC—computer assisted
algorithmic composition.5 This introduces the word algorithm:

The term algorithm is associated with the Greek arithms (number) and
the Arabic term algorism (number series). Algorithm is usually defined
as a set of rules for solving a particular problem in a finite number of
steps [...]. Typically, algorithmic composers employ computers to real-
ize these finite steps. [Cop97, 192]

5Whenever I use the term CAC, I do not exclude CAAC.

13

This gives us a reasonable, but not satisfying definition. For example, the phe-
nomenon of chaos-algorithms are well known. Such algorithms predicts the move-
ment of an object constantly dividing itself (like split atoms). The algorithm does
not necessarily ‘solve any problems’, but it is considered an algorithm neverthe-
less (note that chaos-algorithms are useful in CAC, to rapidly generate masses of
musical material). In the book Electronic Music and Sound Design an algorithm is
defined as

a sequence of instructions, written in a programming language, that
enables a computer to carry out a defined task. [CG09, 3]

This definition is closer to what I previously have associated with the term, and is
also a good general description of the programming examples following this the-
sis, but it is problematic, since it seemingly proposes that algorithms only exists
within computers. The mentioned book is however written as sort of a workbook
for Max users, and the definition should be understood within the context of com-
puters science.

2.1.4 Composition

The word composition stems from the Latin term compenere meaning ‘put together’
[Oxf13]. In musical communities the term is more problematic. Composing, being
something that composers do, creating music, is, in my experience something that
many musicians have a very specific definition of. For many people, very little
music making is actual composing (like song writing). In this text I will use the
term simply as a word for writing and preparing some sort of music that is possible
to perform later, but prepared with such a high level of detail that it can not be
viewed as improvisation.

2.1.5 Combined: computer assisted algorithmic composition

If we combine these terms with each other, we get other terms like computer as-
sisted composition, algorithmic composition and computer assisted algorithmic
composition. These terms will often be understood as the same, but may also
be viewed as separate entities (like non-computer algorithmic composition and

14

non-algorithmic computer assisted composition). One interesting example of non-
computer algorithmic composition (or procedural composition) is the musical dice
games of W. A. Mozart, were the user rolls dices to select precomposed bars of
notes that are combined into a piece of music. One of the first CAC-experiments
was an implantation of this procedure, which is clearly an algorithmic approach to
composition. The mentioned computer implantation is further described in section
3.2.4.

2.1.6 Music technology

The term music technology, which is the name of my curricular specialisation, should
also be examined, as it helps defining what one should expect from this paper. Es-
pecially the last word technology is often used in unclear contexts. Music technol-
ogy, I find, is typically used by faculties and individuals alike as an umbrella term
including everything in amplified stage sound, recording studios and other types
of studios, live electronics, synthesis and signal processing, and musical activities
using computers with sound or music software.6 Based on this it would seem
as music technology is something that is musical and needs to be connected to a
power outlet, which seems strange—is not also the delicate mechanics of the ham-
mers in a piano an example of amazing technology? Turning again to the Oxford
online dictionaries, the definition of technology is:

The application of scientific knowledge for practical purposes, espe-
cially in industry, (...)[etymology:] early 17th century: from Greek tekhnolo-
gia ’systematic treatment’, from tekhn ’art, craft’ + -logia [Oxf13]

This definition provides little help, illustrating the problem I associate with the
term—it covers too much. The functionality of the mentioned piano hammers is
also derived from experiments, therefore scientific knowledge for practical pur-
poses. Etymology and definitions aside, the word ‘technology’ has an unspoken
quality to us. It brings association of complex engineering, applied mathematics,
and computer science. Also in terms of music technology the term has a certain

6This, plus film music, is basically everything covered by the ‘music technology’ optional
subjects currently available at the Norwegian Academy of Music (http://nmh.no/studenter/
studiene/studiehandboker/startkull_2014/emner/valgemner/musikkteknologi)
[2014-04-15].

15

ring to it, that makes us think of the likes of Iannis Xenakis, Max Mathews, Karl-
heinz Stockhausen, and Don Buchla.

2.2 Computer music and software

The term computer music, which presumably could be used to describe the music
derived from this project, does not really say anything about the music. Peter
Hoffman exemplifies this with:

Are the novels and poetry of contemporary authors ‘computer novels’
and ‘computer poetry’ only because virtually every author today pre-
pares them with the help of a word processor? (...) Score-writing soft-
ware coupled with electronic MIDI-instruments has greatly increased
the output of many composers—just like word-processing software has
enormously enhanced the human capacity for creating bureaucratic non-
sense and boring novels. [Hof09, 23]

This quote also illustrates the difference from ‘conventional’ use of computers for
making music, and using them for CAC. The computer should take part in the act
of composing itself, but the computer will usually not replace the composer, it is
foremost an assistant, useful for increasing productivity and organisation, and can
possibly speed up certain parts of the process of composing some types music for
some types of composers.

If the process are to fall within the category of computer music, the computer
have to play a significant role in the creation of the music itself, not simply acting
like a replacement for a pencil, tape recorder, mixing console, synthesiser or any-
thing else that used to be separate objects, but now is commonly found as com-
puter software. There are two very normal types of software that by this definition
is not included within the subject of CAC. The first one is score-writing software,
of which there are mainly two major commercial programs; Finale and Sibelius,
the second is DAWs (Digital Audio Workstation—which is software combining
recorder, sequencer, mixer, virtual instrument and effects, etc), of which there are
a lot of popular programs, including ProTools, Cubase, Logic, Ableton Live, and
many others. Although it is possible to use all these programs for simple CAC (for
example with MIDI-plugins and functions for shuffling notes in various ways),

16

they are not considered very useful for actual ‘musical computing’, which is some-
thing I define in two main sections: DSP and CAC.

2.2.1 DSP, CAC, and environments

DSP (Digital Signal Processing) refers to the use of digital processing (e.g. some-
thing with a microprocessor, like a personal computer or a specialised digital au-
dio unit) for executing synthesis or processing of recorded or incoming audio sig-
nals. Of course, audio as ‘sound’ does not really exist in a digital environment, the
term refers to either digital recordings at its respective sample and bit rate, or dig-
ital realisation (synthesis) of specific waveforms and their features. Reaktor, Max,
Csound, and SuperCollider are typical environments for this purpose.

CAC differs from this in that it is often associated with the process of generating
the formal structures in music. Computer assisted generation of tone rows, chord
progressions, forms, and such falls into this category. For this purpose, OpenMu-
sic, PatchWork, JMSL, and MUSICOMP are typical environments.

The programs mention above are so-called ‘programming environments’ (which
some would say is not really programming) that do not require any special pro-
gramming knowledge to work with (perhaps with the exception of Csound). Of
course, there is also the possibility to work musically with CAC or DSP using gen-
eral purpose programming languages like C, Python, C++, Basic, Lisp, etc, which
many notable CAC composers have done.

2.2.2 Synthesised sound and synthesised composition

There are of course also possible to use several of the DSP-environments for CAC
and visa vi. OpenMusic for instance, has many excellent tools for processing au-
dio7 (especially those described by Jean Bresson [Bre06]), and Max can be used as
a powerful system for generating and controlling MIDI.

CAC and DSP may also be combined into systems where both the composi-
tion itself and the sounds are generated by a computer. Yannis Xenakis’s system
GENDY (section 4.1) is an example of this, using stochastic principles for calcu-
lating the synthesis parameters of each sound. Also Tristan Murail have used re-

7Much more than only spectral analysis and partial tracking which seems to be a common asso-
ciation to OpenMusic.

17

lated approaches, mainly since the additive synthesis sounds in compositions like
Désintégrations (1983) had several hundred parameters that were simply too labori-
ous to adjust manually [Mur84]. Some of the first systems for CAC included sound
generative subsystems (like the systems of Olson and Belar [OB61] and Caplin and
Prinz [Ari11, 43]), foremost simple synthesis systems where generated melodies
were sent for instant playback and review.

2.3 The problem

In texts written about CAC, there is a reoccurring statement that basically says
it is difficult to have computers compose music of as good quality as a skilled
human composer. One of these texts is the paper Six Techniques for Algorithmic
Music Composition by Peter Langston, in which he in the introduction writes that

(...) software engineers find formidable challenges in areas such as mu-
sic composition; simulation of this complex human activity requires ex-
pertise in algorithm design, expert systems, optimization, and other re-
lated software engineering disciplines. Designing an algorithm to com-
pose music, unlike designing an algorithm to invert a matrix or solve
the traveling salesman problem, has no simple, mechanical test for suc-
cess; if such a test existed, the computer analogy to the infinite number
of monkeys and infinite number of typewriters trying to write Shake-
speare could be tried (...). [Lan89, 1]

This and similar statements ([Mur05], [Cop00], among others) are well known
challenges in CAC. Seemingly there is too much to ask of a computer to be able
to see the process of composing complete works as a wholeness, and be able to see
connections between all elements that together is a composed work. Norwegian
composer Lasse Thoresen once answered the following when asked to define what
composition is:

To make good music is like solving a seven dimensional crossword
where all elements has to match in every direction: harmonic, melodic,
rhythmic, form wise, timbre wise, expression wise, spiritual: all parts
must enlighten the others without becoming obsolete; everything must
be justified in countless ways (authour’s translation).8 [VG04]

8Untranslated: Å lage god musikk blir som å løse et syvdimensjonalt kryssord der de samme

18

Is composition to much to ask of the computer? Are we waisting our time trying
to make them do things we could do better ourselves? It really depends on what
we want to see composition as. Adjusting synthesis parameters can be compo-
sition, just as much as composing melodies and harmonies. During this project
I found myself viewing programming and composition as not separate tasks, but
the same thing—programming as the composition itself. By viewing programming
as composition, letting the algorithm not only make the music, but be the music,
the perspective of what one can expect from it, and what it is possible to create, is
more in contact with reality than if we want to ‘hit the button’ to compose the next
great symphony.

elementene skal stemme på kryss og tvers alle vegne: harmonisk, melodisk, rytmisk, formmessig,
klanglig, uttrykksmessig, åndelig: Alt skal belyse hverandre uten å være overflødig; alt skal være
berettiget på utallige måter.

19

Part II

History of computer assisted
composition

3 Early history of computer assisted composition

The field of computer assisted composition have, from the mid 50s to the present,
presented a number of compositions of significant difference in musical style, tech-
nological approach, and artistic quality. These differences should make it clear that
CAC is not really a musical style or composing technique, but rather an attitude
towards the use of technology. CAC composers share little with each other but
the wish and will to integrate computers in their writing. Even the motivation for
doing so often varies greatly, from the programmer’s approach of having the com-
puter make music, to the pragmatic composer’s approach of having the computer
do tasks (s)he can not—or do not want to—do manually, wether being related to
labour, practical reasons, or simply a way to execute tasks impossible to do without
this kind of technological approach.

In this section I will briefly present some of the first attempts at CAC, which
were realised almost as soon as computers became available, and also mention
a few approaches done later, when computer technology had developed into a
more practical work environment. A tendency that separates the older approaches

20

from some of the newer ones (especially the examples mention in this text) is that
while the early attempts focus on reproducing musical writing of existing styles,
the newer approaches is integrated in a contemporary musical discourse, utilis-
ing the technology to generate new forms of expression. This can possibly be
seen in the context of most of the early experiments were executed in the field
of computer science, by scientists, while the later approaches were executed by
composers wanting to composing music.

3.1 General historical context

The immediate post war western music history is dominated by serial composers
of the Darmstadt school, and the two technological approaches electronic music
(which also soon appeared as serial music), and musique concrète. The nominal
interpretation of these tendencies are that serial music is established as a reaction
to fascistic politicising and romanticising of romantic music during the 30s and
WW2, while electronic music and musique concrète is a natural development due
to new available technology and research. All three directions should of course
also been seen in context of the post romantic era liberalisation from tonality.

The post war years is also the start of the cold war, (often dated 1947-91), with
the first successful detonation of a Soviet nuclear device in 1949, starting the cold
war arms race. Generally, an arms race is, a race between two powers to have
the best armed forces. In this case nuclear technology, the cold war symbol it-
self, was the most important type of weapons, but effectiveness and innovation
in other kinds of military technology were also of great importance. This arms
race had two interesting effects on non-military life:9 First, technology develope-
d/sold for military use, have later become of great importance for civilian use (like
micro-processors, Internet, GPS). Second, while the two superpowers competed in
having the most destructive arsenal of weapons, there were also a competition in
having the more advanced technology in non-military science, leading to a lift in
the overall development in research and technology.

9Of course the Cold War and the arms race generated much more complex synergies than these
two, but these are the ones relevant in the context.

21

3.2 Pioneering projects

The history of computer assisted composition starts in the 1950s, which also is the
decade of the emerging age of computer science, with the outfitting of universities
and research facilities with computer systems to perform calculations, aid research,
and other tasks. Within the field of CAC an interesting notion is that during a short
period of the middle 50s, several experimental approaches to generating music
with computers were initiated, seemingly unaware and uninspired of each other. It
was only when Lejaren Hiller published a paper on the Illiac Suite (a string quartet
named after the computer used to compose it, an ILLIAC 1) in 1961, four years after
the research was completed, that he started to receive letters from other who also
had conducted similar experiments [Ari11, 41] .

Although Hiller and Isaacson is considered responsible for the first true compo-
sition composed by a computer, Hiller is the first to mention that there were other
successful experiments executed before the realisation of the Illiac Suite. There
were also experiments done at the time that were conducted without the use of
computers, but using very similar approaches. I would like to mention particu-
larly two non-computer interesting innovations from the 50s that is of relevance to
the subject.

3.2.1 Machine to Compose Music

The first one is Cohen and Sowa’s Machine to Compose Music [Ass98], which was
based on the educational toy ‘GENIAC’ (an electronic construction kit that may
be used to aid calculation, but has no internal computing abilities) [Sow13]. The
Machine to Compose Music was built specifically for the purpose of composing pen-
tatonic melodies based on simple coin flipping like decision making (coin flipping
being a random result from two potential outcomes; easily representable with 0
and 1 in a binary system). In figure 1 [Sow13] we see a simple table describing
how random melodies are created from the coin flipping trial. Solid lines repre-
sents heads, dotted lines tails. Starting at the left top C, flipping a tails, the next
note is another C. A flip leading to a 0 will result in a prolongation of the previ-
ous note (a quarter note becomes a half note). Note that the bottom number is a
new 1., bringing the table up to the first level, ergo the processes may theoretically
continue forever.

22

Figure 1: Diagram showing a coin flipping table from Sowa’s Machine to Compose
Music. Data flows downwards. [Sow13]

3.2.2 Combination Random-Probability System

The other non-computer innovation is the work Harry F. Olson and Herbert Be-
lar. Olson will for some readers be known as a major inventor in the fields of
music technology, sound, and recording, throughout the 20th century, responsible
for several now industry standard microphone designs and the 1955 RCA Electronic
Music Synthesizer, known as the first modern synthesiser. The Combination Random-
Probability System was a machine built in the early 50s and patented in 1961 [OB61].
It basically consisted of two random number generators with weighted probabili-
ties controlling pitch and rhythm, along with a sound generating system produc-
ing sawtooth waves [Cop91, 6]. Assayag argues that this device was not actually
a computer, but ‘a set of electronic circuits compromising a subsystem for sound
generation and another for stochastic composition’ [Ass98]. Previously we defined
a computer as a device with the possibility of receiving and modifying informa-
tion, with the user having the possibility of altering (through the act of program-
ming) the way the information is processed. The Combination Random-Probability
System has the ability to generate information and send it to a predetermined set of
instructions. Since the instructions are not variable (they are defined in soldered,
unmodifiable circuits), the device is not programmable, hence not a computer. It
is still a device which has qualities interesting within this field of research, as the
musical output is closely related to the CAC projects of the time, which I assume
is Assayag’s point of view as well, as he has included it in his text about computer

23

assisted composition. The device resembles a different approach for executing a
similar task. Olson was an inventor and an electronics engineer, not a computer
scientist, which makes an electronic machine a more natural platform than a com-
puter.

3.2.3 Banal Tunemaker

Of the more truly computer based experiments, an early entry is a program by
Richard C. Pinkerton who worked with the appliance of information theory in
melodies. Based on this he designed, in 1956, a stochastic procedure called a Banal
Tunemaker, which were fed with 39 existing folk melodies and nursery songs, that
were separated into segments and combined into new pieces, using random num-
bers [Ass98] [You58, 24]. The available technical information on this experiment
is sparse, which makes it unclear what the computer actually did, and what was
done manually. This approach is related to the newer approach known as ‘style
emulation’ described in section 4.2

3.2.4 Musikalisches Wúrfelspiel

Another early attempt is the one that involves Mozart’s Musikalisches Wúrfelspiel
(musical dice game). This is of course completely possible to execute by hand,
but it is time consuming and repetitive, which is exactly the task computers are so
suited for. In 1955, David Caplin and Dietrich Prinz did exactly this—they success-
fully created a computer-driven version of Mozart’s dice game,10 which is probebly
the first use of a computer to compose music, as it was done before Pinkerton’s ex-
periment, and Olson’s and Sowa’s machines were not computers [Ass98] [Ari11,
42].

There are at least 20 different dice games attributed to Mozart, and this spe-
cific one was published in 1793 [Ari11, 44]. It is a composition tool, containing
176 pre-composed bars of music, that are systematically selected and combined
by rolling two dices several times and placing bars corresponding to the dice’s
numbers after each other, resulting in 16 bar long compositions consisting of two
homophonic lines to be played on a keyboard instrument [Ari11, 45]. In Chaplin

10Should the reader be interested in this phenomenon I recommend downloading
Gary Lee Nelson’s Max addaption of the concept. http://cycling74.com/project/
mozarts-dice-game/ [2014-05-05].

24

and Prinz’s implementation the present hardware’s computing power (a Ferranti
Mark I) only allowed them to compose one line (they used the right hand voice), at
an octave lower than specified, since the correct octave frequencies was to high to
compute (reducing the notes by one octave reduces the frequencies by half, there-
fore reducing the computing power needed to calculate each note). There were
also only possible to assign pitch and duration to each note, as the speaker system
(integrated in the computer) could not interpret varying dynamics [Ari11, 42]. The
dice’s function was executed using the Ferranti’s random number generator.

This experiment may seem banal from a modern view. It was based on a pre-
computer algorithmic system, that even for being a dice-game wasn’t especially
advanced or even musically interesting. To actually fulfil such an experiment in
1955 though, requires dedication and insight. Ariza writes:

While Caplin and Prinz could have generated endless random melodies,
the implementation of Mozart’s Musikalisches Wúrfelspiel offered a
connection to historical practice and a suggestion of musical legitimacy.’
[Ari11, 46]

The experiment had shown that actual music, not mere musical gibberish, was not
only possible to compose with a computer, but by a computer. The extra effort of
generating a procedure for sound realisation is of particular interest. Mozart’s ‘as-
signmet’ is to produce a music sheet that can be played by a pianist—not making
a computer automatically play it. This task could easily be done by printing the
numbers as notes. It is a visionary idea of the time, to further develop the concept
into a complete computer music procedure, with the random selection of bars, the
conversion to frequencies, and the audible final realisation of the music.

It is interesting that already in this period, computer time was given to scien-
tists that wanted to work with an ‘unnecessary’ discipline like music. Computing
time was a rare commodity at the time, as the systems were slow, ponderous, ex-
tremely expensive, and calculations took hours or days (although this was fast
compared the time that human labour would have used to execute similar calcu-
lations.) Ariza [Ari11, 44] writes that David Chaplin and Dietrich Prinz in their
initial experiments at KSLA11 used, in addition to their own programs, some of

11KSLA is located in Amsterdam and now called Shell Technology Centre Amsterdam [Ari11,
41].

25

the so-called ‘visitor programs’ that were used to demonstrate what computers
could do for various people touring the facility. As Chaplins and Prinz’s proce-
dures actually would produce sound (melodies in the style of Mozart even) from
the systems integrated speaker, these were also used to impress visitors by show-
ing the vast possibilities within computer technology—while still maintaining a
human connection through music, which most people can relate stronger to than
logarithmic calculations.

3.2.5 Lejaren Hiller and the Illiac Suite

Despite the achievements of Chaplin and Prinz it is common to coin the first com-
position realised with a computer to Lejaren Hiller in collaboration with Leonard
Isaacson, with the piece called Illiac Suite for String Quartet, composed during 1955-
57 [Ari11, 40] named after the ILLIAC 1 computer that were used at the University
of Illinois [Hil63, 100]. This project was, as illustrated above, not the first entry
in the history of CAC, but it was the most rigorous experiment with the highest
degree of computer executed composing.

The suite consists of four movements based on separate programming rou-
tines, the three first focusing on different musical phenomenons, while the fourth
uses statistical principles more than musical principles, more specifically Markov
chains. A Markov chains is

a probability system in which the likelihood of future event is deter-
mined by the state of one or more events in the immediate past. [Roa96,
878]

Obviously, this is an advantage in the composition of music, where one rarely
would want completely randomised musical structures, but rather a sensible form
and wholeness to the music. As a source for the fundamental musical material,
Hiller applied a Monte-Carlo algorithm,12 that allowed for creating large quanti-
ties of material with a probability of ‘errors’ (it is not clear how the errors were ap-
plied). This material, which were of course numbers, was mapped to basic musical

12‘Any method which solves a problem by generating suitable random numbers and ob-
serving that fraction of the numbers obeying some property or properties.’ (From: Wolfram
Alpha 2014 [iOS application], Wolfram Group LLC http://itunes.apple.com/en/app/
wolframalpha/id334989259?mt=8)

26

parameters as pitch and dynamics, but also to instrumental playing technique (like
arco and pizzicato, this being a string quartet). The material was then run through
a set of compositional rules (Fuxian similar rules as counter point, voice leading,
etc) before being evaluated as ‘valid’ or not in Markov chain tables [Ass98]. Trim-
ming down the massive amount of material by selection seems to be the main task
for the Markov chains here.

Hiller’s research project is of great importance in the history of CAC and com-
puter music in general for several reason. Mainly, it is the first thorough inquiry
in computer music which is also academically documented. It is also an original
musical project that uses new ideas for generating material, unlike computer im-
plementations and simulations of 18th century composition games. Assayag calls
the project a

(...) major breakthrough as it opened a new perspective for musical
engineering, even if the interest of the artistic result itself may be dis-
cussed. It initiated the practice of algorithmic composition, which is
still alive, especially in the United States. [Ass98]

It is also interesting due to the fact that the Monte-Carlo algorithm and Markov
chains were such important components in the realisation of the project. In the
time of serialism and computer technology as a new phenomenon, viewing music
as information or data was a very contemporary observation by Hiller and Isaac-
son.

4 Four examples of newer approaches

Before moving on to the programming of my project I will present four different
approaches to CAC, all from a newer time than the early projects mentioned above.
There are hundreds of different projects, compositions, programs, or approaches
that could have been mentioned as well, these four are chosen because they have
a certain relevance to my research.

4.1 Stochastic sound & stochastic composition

Iannis Xenakis, which is probably the most known composer mentioned in this text
(excluding Mozart of course), is the programmer and composer behind the very

27

interesting composition GENDY3 from 1991. The idea behind GENDY3 is, as in the
adaption of the Musikalisches Wúrfelspiel by Chaplin and Prinz, an idea that stems
from before the use of computer composition. Xenakis’s Metastasis, from 1955,
composed right in the very infantile years of CAC, also one of his most known
compositions, is a stochastic work that uses the same principles that are utilised in
the computer program used to compose GENDY3. Part of what makes this piece
relevant is the complexity of the computer program and the fact that not

(...) only is the musical structure of GENDY3 stochastic, but the sound
synthesis is also based on a stochastic algorithm that Xenakis invented
and called ‘dynamic stochastic synthesis.’ [Ser93, 236]

GENDY3 is composed with program written by Xenkais in Basic, called GENDYN
(GENeration, DYnamic), both the works GENDY3 and GENDY301 is created with
this program [Ser93, 239] [Hof09, 9].

What the dynamic stochastic synthesis model may be viewed as is sort of an al-
ternative oscillator. Instead of producing periodic, repeated waveforms, as those
used in classic analogue synthesis (sine, triangle, sawtooth, and square), Xenakis
defined an algorithm that calculates the amplitude of each separate sample of the
waveform. When a waveform is ‘completed’ (finished one period), it is subjected
to a stochastically calculated variation of itself. Figure 2 shows an example of how

Figure 2: Examples of waveforms realised with dynamic stochastic synthesis.
[Ser93, 241]

two waveforms may appear. Note that signals between the ten points per wave-
form are completely linear. This will result in some aliased waveforms:

The sounds are usually very rich in harmonics and present a lively and
dynamic quality that is noticeable. The polygonization of the wave-

28

form introduces discontinuities into the numerical signal that produce
high partials, some of which will be aliased by the digital-to-analogue
conversion. Digital filtering can be applied in order to attenuate the
aliasing, but then the signal may lose some variability that is valuable
for the dynamic quality. [Ser93, 250]

GENDY3 also uses randomised calculation to construct the macrofrom. There is a
total of 16 voices that play at different times. This decision is done with a ‘Bernoulli
trial’, which is a random process with two possible outcomes, typically called suc-
cess or failure [Ser93, 253] (like Sowa’s coin flipping procedure). If a voice rolls
a success it will start playing, and, using a formula, calculate how long it will be
active.

Let us keep in mind that this piece and computer program was completed in
1991, after a long period in musical computing with reduced research around the
field of CAC, which were of little interest and at the time had little practical use,
and larger focus on DSP, which has a more understandable application and the
possibility to enhance the quality and sound of much more music:

After this pioneer period [the 50’s and the 60’s], CAC suffered from
the considerable development of digital audio technologies. Massively
attracting means and people, tempting by its immediate rendering of a
new sound world, researches in digital sound synthesis and processing
also gave a more scientific status to computer music and perhaps rang
the bell for the likened ‘composer-engineer’ character who had been so
often associated to former works. [Ass98]

It is then of no surprise, that around 1990, when also computer assisted spectral
composition, as mention below, were at a peak, a piece which truly combines tech-
nology, artistry, and musicality of both CAC and DSP is realised. Xenakis,

unlike many computer music composers, had no ambition whatsoever
to emulate traditional musical thinking with the computer. Instead he
realized his sonic vision in an abstract physical model of sound pressure
dynamics yielding higher-order musical structures as emergent epiphe-
nomena. [Hof09, 9]

29

4.2 Style emulation

Some composers, of there is one of that have become especially known, David
Cope, have used the approach of style emulation. This idea demands the reduction
of a musical style down to a set of rules that can be repeated over and over again
for creating massive amounts of musical material.

Cope produced interesting simulations in the style of Bach, Mozart, or
Beethoven; but Cope is also a composer. In this case, the problem for
him is to define the atoms of his own musical style. There is here the
implicit assumption that musical creation consists of the recombination
and working out of preexisting cognitive elements representing the non
formalizable part, the absolute originality of a creator, in other words,
the style. If this database-oriented approach makes sense for musicol-
ogy, it seems marked by a too naive idealism as far as contemporary
creation is concerned. It denies the idea of invention for which it substi-
tutes that of combinative discovery of the musical ‘self’, and, by there,
seems not very likely to reach real innovation. [Ass98]

The process of isolating the musical atoms is the crucial phase in this approach.
Cope’s emulations of Bach sounded significantly less dull after he implemented
the chance to break rules of voice leading [Bli10]. Of course one can never manu-
ally program a computer to have a fantasy as rich as a humans, while still maintain-
ing the possibility of creating an artwork with a sense of wholeness and continuity.
One may however adapt CAC into the field of artificial intelligence, evolutionary
algorithms, and machine learning. Emily Howell is a program by David Cope,
where Cope has the ability to ‘like’ or ‘dislike’ the program’s output to his pref-
erences. This program has produced some interesting and very listenable musical
pieces, like those released on the CD Emily Howell: From Darkness, Light.13

4.3 The pragmatic approach in spectral music

I would also like to, in this small survey of CAC, include a part on the mainly
French style of music known as spectral music. Spectral music is a kind of music,
or perhaps more an attitude towards the compositional process,14 emerging pri-

13Cope, David. Centaur Records, 2010. Compact Disc.
14Are not most of the 20th century musical ‘styles’ just as much attitudes towards music as they

are musical styles?

30

marily in France (hence the term The French spectral school of music) during the late
70s and 80s. A key feature is the use of Fourier transform analysis (or fast Fourier
transform—FFT) of sound waves done with computers: a technique (among other
things) used for revealing the harmonic spectra of a sound, which gives the com-
poser a detailed understanding of the sound’s partials: their frequency, amplitude,
and phase, and the movements and interactions of these components. This infor-
mation becomes the raw material of which the composition may be realised from
on several levels, either directly, transposed in some way, or purely metaphor-
ical. There are four composers that are usually mentioned in most discussions
of spectral music, including Tristan Murail, Gérard Grisey, Hugues Dufourt, and
Jean-Claude Risset.

The role of the computer in this type of music varies greatly from each com-
poser and composition. One of the most known pieces from the movement, Mu-
rail’s Désintégrations is a composition for a small orchestra and tape (synchronised
with a click track for the conductor). The tape part of the piece is realised using ad-
ditive synthesis.15 The sound of the tape has, in addition to playing non-orchestra
sounds, the role of amplifying, modulating or distorting the sound of the orches-
tra. What is interesting in this context is how the synthesis of the tape is realised.
Murail is here discussing the use of a single sine wave generator to compose com-
plete pieces of music in the initial phase of electronic music, recording different
frequencies over and over again.

This all became much easier with computers. Nevertheless, creating
sounds with additive synthesis remains complex and difficult. For ex-
ample, in Désintégrations to create an interesting sound it was often nec-
essary to keep track of 10-30 components per sound, with 10-15 sepa-
rate parameters for each component: pitch, dynamic, duration, time
of attack, dynamic envelope, spatialization envelope, vibrato—with its
different parameters (envelope, frequency, amplitude), spatialization,
etc. There were often several hundred parameters for a single sound.
[Mur05, 249]

15Additive synthesis is a synthesis technique that consists of combining (adding; additive) a
large number of sine wave oscillators with individually set frequency, amplitude, and phase to
achieve a desired sound. Since all sounds are combinations of sine waves, every imaginable sound
is theoretically possible to achieve with additive synthesis. Frequencies are often based on partials
withdrawn from spectrum analysis, or mathematically calculated to achieve a specific harmonic or
inharmonic spectrum.

31

As we see here the primary agenda of using a computer is pragmatic. The precise
settings of each synthesiser module is not what is important, but in order to ‘exca-
vate’ sounds from it, adjusting individual parameters manually is simply to labo-
rious, and randomisations by the computer is a more sensible approach. When the
synthesis modules already are defined within the programming language, there is
a small task to equip them with some sort of random number generators or any
kind of control via mapping of other data. Murail continues:

I needed to write a program that could calculate all of the necessary pa-
rameters as a function of global musical data. (For example, I needed to
be able to specify to the computer that an oboe spectrum would be used,
that the global duration would be x seconds, that the attacks would not
be simultaneous, but rather staggered with acceleration effect), that the
vibrato would have a certain frequency (speed) for the lowest compo-
nent and another for the highest component, etc. The program then
performed all of the necessary intermediate calculations, carried out
any interpolations need, and supplied the list of parameters required
for synthesis. [Mur05, 249-50]

This points at some interesting aspects of computer assisted composition. It’s is
clear to us here that the composer of the music is the human. However, the com-
poser of the sound seems to be the computer. The synthesis programs built by
Murail could probably create a magnitude of different sounds. As we know, for
Murail, the sound itself is an extremely important component of the music, chan-
neled through the idea of ‘Posing sonic material, simply offering it to the listener’s
hearing’ [Mur05, 174].

4.4 Autonomous systems

Figure 3: Basic feature-feedback system. [Hol12]

32

As a final mention in this brief overview, I will include a short mention of the
concept of autonomous systems. Figure 3, from the research of Risto Holopainen,
illustrates a basic system that executes realtime analysis on it’s own output and,
based on this analysis, changes constantly changes itself, resulting in a sort of adap-
tive synthesis [Hol12]. The ability for the software to unaided be able to interpret it’s
own output makes the computer active in composition with a new level of depth.
This is related to, but still very different from, the previously mention work on
evolutionary algorithms by Cope.

33

Part III

Method

The primary goal of this project is exploration of possibilities in composing music
with systems based on visual programming for generating and controlling digital
audio. This imposes that the ultimate goal is creation of music, but it is actually
the system, the process of evolving the system, and the use of it, that is of highest
importance—the music composed is considered a secondary goal and a desirable
side effect. There is of course also the other primary goal of documenting the
work thoroughly in this thesis, which contributes in making the project a research
project. This section deals with the methods used in the project, primarily the
research method, but also some mention of practical solutions in various parts of the
project.

To research something means to systematically investigate it, in which the word
systematically implies applying some sort of method to the investigation of the sub-
ject. The choice of research method for a master’s thesis, or any research project of
any size, is as crucial and as important as the choice of research questions. While
the research questions deals with what one is researching, the method obviously
deals with how one approaches the questions and subject.

34

5 Artistic research

The method used for this project is based on what is known as artistic research (AR).
The use of AR allows us students and researchers within the fields of arts to ex-
plore, develop, and execute our artistic works in an academic presence. AR is not
necessarily applied as science, and projects using AR is not necessarily a scientific
inquiry. By this I mean that we (the artistic researchers) are not (re)searching with
the goal of obtaining scientific proofs of something. The scientifically obtainable
facts about arts are in many, but not all cases, not interesting, at least not as inter-
esting as other aspects of art may be. There is not an obvious reason for turning
an artistic project into an artistic research project. The project should be fitted for
academia, and the artist should also want to be a researcher as much as an artist.

I don’t think an artist should (intentionally at least) become part of an
institutional body purely for the reason of creating art. [Bro12]

The artist should, instead, ‘become part of an institutional body’ for working with
artistic research—if (s)he has a desire to do so. Research and arts become interest-
ing when the research turns into developing new forms of arts, of that which were
not possible without the research. In music, such scientific achievements would be
the all kinds of things like the microphone, amplifier, and speaker, the possibility
to record and store sound, the hammerklaver, all kinds of synthesis, signal pro-
cessing, i.e hundreds of innovations that changed how musicians works, but also
musical works like GENDY3 and Désintégrations.

An interesting conjunction of science and arts, or rather science applied with
artistic material, is the research of José Antonio Bowen presented in the paper
Tempo, Duration and Flexibility: Technique and Analysis in Performance [Bow96]. The
work displays a rigorous work on measuring tempo and tempo changes in a large
number of recordings of the same symphonies, with different conductors and or-
chestras. This is a good example of a scientific (statistical) method applied on artis-
tic material, revealing interesting cultural and historical tendencies, since the plots
displays changing of tempos throughout the 20th century, differences between
American and European conductors, and difference in different recordings by the
same conductors (like Bruno Walter going slower and slower for every event). This

35

Figure 4: Scatter plot showing the initial tempo from different recordings of
Mahler’s 4th symphony, 1st movement. The trend line shows an average raise
from 86 to 88 bpm throughout the 20th century. [Bow96]

project is, as Bowen writes introductory, an attempt to bring the work of musicol-
ogy away from ‘what remains the same’ (the score), and over to ‘the event’ (the
concert and/or recording), which is always different [Bow96]. I find this attitude
towards musicology sensible, as it raises the ultimate musicological question of
what music is. While traditional musicology has for years focused on the score as
the actual ‘work’, and the performance as an interpretation of the score, the aver-
age listener will view a performance as the actual music, and if the listener does
not know how to read music the score is useless. Both options are of course both
right and wrong. A score is a stack of paper, which is not music, but without the
score the work doesn’t exist other than in recordings and/or memories. Today a
piece of music (in this context a ‘piece of music’ refers to composed, printed music
meant for acoustic performance; a classical composition) is several things: scores
in different editions, various recordings, memories in peoples minds, plagiaries,
etc, and all aspects of music should be considered legit, musicological, research-
able subjects, from note structures to timbre, performance, reception, recording
principles, development, history, industry, etc.

5.1 How artistic research was used

Much of the thesis is based on readings of existing literature, including both CAC
and DSP specific writings and discussions of AR in academics. AR is, opposed to
research in the terms of social and scientific research, based on a rigorous explo-

36

ration of a subject, and not the practice of testing of a hypothesis, though there is
nothing wrong with using testings of hypothesises as part of the exploration. AR
is also a method where the researcher enters both the role of a researcher and the
artist, therefore becomes the research subject itself, or rather, the art of the artist
becomes the subject. A crucially important feature is that AR also allows the sub-
jectivity of the researcher to account for a valid result. This illustrates perhaps the
difference between universities and other higher education institutions (especially
art academies). In the words of Henk Borgdorrf:

Research in higher professional education differs from that in univer-
sity education in the degree which it is oriented to application, design
and development. As a rule, ‘pure’ or fundamental scholarly or scien-
tific research (if indeed that exists) is and remains the province of the
universities. Research at theatre and dance schools, conservatories, art
academics and other professional schools of art is therefore of a dif-
ferent nature to what generally takes place in the academic world of
universities and research institutions. [Bor06]

This is probably different in different countries. This project in done at the Norwe-
gian Academy of Music, which by name is an ‘art academy’, but still has the same
duties and requirements within education and research as universities.

The authors of the book Artistic Research isolates several features and goals in
common in most projects using artistic research [HSV05, 20-21]. One of the fea-
tures is that the artwork is the ‘focal point’ and is the most important priority in
the work. In this project this is different, the actual research (the development of
the programs) is in this case the ‘focal point’, while the artwork serves the role of
supporting the research—it’s process, development, and final form are the research
material.

The research part of this project can be broken down to defining a procedure
(an algorithm), executing it, observing the results, and evaluate the result. Based
on the evaluation the process starts over again and the procedure is changed ac-
cordingly, which leads to a new result and a new evaluation. This process theoreti-
cally never stops, but at some point it will be necessary to withdraw some musical
information and do something with it.

37

6 Systematic experimental programming

I have called the approach used when programming the patches ‘systematic exper-
imental programming’. ‘Systematic’ as in a procedural approach, a planned line of
steps, and ‘experimental’ as in that though I have an idea of what is going to hap-
pen, the course of action may change due to unforeseen events, making me change
the idea. The initial idea may just as well be a desire to cultivate a certain musical
event—and, based on this, try to execute it with programming, or the opposite,
trying to use some certain objects in a certain way—and see what musical results
is possible to achieve. The methodological process in this project has the following
stepwise course:

1. Form an idea for a procedure

2. Define procedure in programming environment

3. Test

4. Evaluate

5. Redefine

6. Record material to DAW

7. Arrange material into musical composition

8. Evaluate process

Step 7 is obviously very open of character, providing no limitations or guidelines
on how to use the DAW as a compositional tool. At this point in the process, the
musical material is anyway taken out of the process associated with CAC, so there
is, in the context of this text, not particularly interesting to discuss what happens
in the DAW. It would be against the projects nature though, to either process the
audio samples so much that it becomes sonically disconnected and unrecognisable
to the patches that generates them, or to add extra audio to the compositions using
samples, virtual instruments, or any other external audio source.

38

7 Software

7.1 Max

Max, also known as MaxMSP or Max/MSP/Jitter, is a graphical/visual object-
oriented programming environment, and is mainly used for making custom DSP
applications, both for studio, installations, and live use. Max is object oriented,
meaning that the programming consists of combining ready defined objects into
interacting with each other. Figure 5 illustrates a simple procedure made in Max

Figure 5: Simple amplitude modulation application made in Max 6. The cycle∼
(sine wave oscillator) operates as a carrier with a frequency of 400 Hz, while the
phasor∼ (sawtooth wave oscillator) functions as a modulator at the frequency of
10 Hz. A scope∼ is used for visualising the modulated waveform.

for this introductory text. It features two floating number boxes, two oscillators,
an audio signal multiplier, a gain slider, a scope, a toggle and a digital-analogue
converter. All these a called objects, and are readily designed and included in Max
(Max objects will from now on be written in an own font for easy distinguish-
ing, like this: object). To make objects interact with each other, one connects
their inlets and outlets to each other using virtual patch cords. Striped cords repre-
sent audio signals, monochrome cords represent data (numbers, lists, bangs,16 etc).

16The bang message is the basic message in Max: ‘it’s the message that tells many objects to
do that thing you do.’ (Max Tutorial 2 http://www.cycling74.com/docs/max5/tutorials/
max-tut/basicchapter02.html [2014-05-05])

39

What is happening in this patch is that the two number boxes at the top sets the
frequency of the oscillators below. The cycle∼ (the tilde sign is used after the ob-
ject’s name if it is an audio object) is a sinusoidal oscillator, while the phasor∼ is a
sawtooth oscillator. ‘Audio’ in this case is of course simply streams of numbers—
when multiplied in the *∼ we will experience it as that the low frequency sawtooth
will modulate the amplitude of the high frequency sine wave. This is visually il-
lustrated in scope∼ object below to the right, which functions as a conventional
oscilloscope. The striped fader is a gain∼ object, an exponential gain controller,
and a quick solution for adjusting volume levels. Below is the dac∼,17 which is
what actually sends sound out of the software and to the computer’s audio inter-
face. It needs to be switched on (audio objects will stay inactive until), for instance
by using a toggle (the small box with an x—usually used as an on/off switch
for some objects). Using a visual programming environment like this has the great
advantage of creating a user interface automatically while programming. On will
often clean up the look of the programming with hiding of objects, presentation
mode or other methods (in this patch only the number boxes, toggle, fader and
scope needs to be visible).

7.2 Other software tools

For recording the Max-generated audio, signals were routed out from Max with
Soundflower (application-to-application routing software with up to 64 channels),
and in to a DAW (digital audio workstation). The DAWs used were Logic Pro 9
and Reaper 4. Reaper had to be used to produce the 8-channel version of Marise,
since Logic lacks the ability to do this.

The thesis written and typeset with LATEX, using the editor Texpad 1.6 with the
MacTex Latex distribution. References are kept and organised with a Bibtex-file
built using Bookends 11. Pages 4 was used for designing some of the figures.

17Digital to analogue converter—of course it is not truly a dac, the dac is a hardware unit in the
audio interface.

40

Part IV

Programming — composing

This section is written more as a report than the rest of the thesis, as it’s purpose
is to inform the reader of how the patches work and what kind of ideas they are
based on. What kind of ideals they are based on is a subject for part V. Each section
in this part focuses on one main patch and it’s subpatches.

8 Matrise

Matrise (the Norwegian word for matrix) is a patch, and a piece, named after one
of the objects used in the patch, the matrix∼ object. Basically Matrise uses six
instances amplitude modulated oscillators, that are randomly sent to four unsyn-
chronised pulse generators, which are connected to huge sounding reverbs. The
patch, and the others in the project, is self-operating. Gradually as the patch runs,
it will develop into new sonic structures that are more and more different from
each time. The intitial idea was a very simple one: to define a simple multi-output
synthesiser that could be routed to different processors using a matrix∼.

This patch is the only one in the project that outputs on more than a stereo
pair of channels. Though it uses eights channels, it makes more sense to view the
output as four stereo pairs (as shown in figure 6). Among the recordings done in
the patch there is included one 8-channel wav-file with a routing sheet for perfor-

41

mances, and a stereo mix for demonstration purposes.

Figure 6: Speaker placement for performance of Matrise. Rather than typical and
active surround sound (like using VBAP [Pul02]), the piece is installed as four
static stereo pairs.

8.1 Programming Matrise

8.1.1 Synthesiser

The initial sound in Matrise is generated in the subpatch matrisesynth.18 In this
subpatch we find a set of oscillators and an algorithm for setting frequencies. There
are 12 oscillators which is paired two by two. Each pair has a sine a wave oscillator,
and an either square wave oscillator or a sawtooth wave oscillator.

The oscillators in each pair is connected to each other, using the left (saws and
squares) and right (sines) inlets of a *∼, creating six instances of amplitude mod-

18Matrise opens in presentation mode, so the patch has to be switched over to patching mode to
view subpatches, patchcords, and most of the objects.

42

Figure 7: The signal path in the patch Matrise.

ulation. The oscillators will, when close to each other in frequency and sharing
outlet, modulate each other and create a desirable beating effect.19

When the patch is banged from further down the signal path, there is a 1/20
chance that the patch will set a new main frequency. If not, the bang will pro-
duce either new LFO frequencies or new micro variations (detunes of the main
frequency) and shuffle the oscillator’s frequencies. There are at any time six oscilla-
tors using the main frequency (40-120 Hz), three oscillators using a micro variation
(a few Hz below or above the main frequency), and three oscillators functioning
as LFOs (up to 5 Hz). The zl.scramble shuffles the order of these numbers, ran-
domising their destination oscillators. There is also trial with a 1/2 chance before
each oscillator that decides if the oscillator is to change to the new frequency at all,
adding the chance that at a new main frequency, several of the oscillators will not
change, resulting in a duo-phonic output. The six amplitude modulation instances
the leads to the six first inlets of the 10x4 matrix∼.

This results in nice sounding, thick, detuned, and beating textures. A partic-
ularly nice effect is the difference of when a sine wave has a high frequency and
the connected saw or square has a low frequency—resulting in the sine wave be-
ing amplitude modulated by a saw or square, contradictory to when the saw or
square has a high frequency and the sine has a low frequency—resulting in a saw

19Beating occurs when two oscillators are close, but not identical in each other in frequency,
creating a third frequency with low frequency amplitude modulating effect.

43

or square wave being amplitude modulated by a sine wave.
There is also a small noise generator (the patch noisethresh) using the re-

maining four inlets of the matrix∼. This part is a very simple autonomous algo-
rithm, using a signal measuring (after the high pass filter further down the signal
path) to detect loud levels. Over a set threshold, the patch will output comb fil-
tered pink noise into the audio stream, adding more character and colour during
intense moments. The same pink noise generator (pink∼ object) is patched to four
filters (comb∼ objects) with randomised parameters, and the four filters leads to
the matrix∼.

The 10x4 matrix∼ uses a simple algorithm based on random to create three
elemented lists of numbers: 0-9 (horizontal), 0-3 (vertical) and 0-1 (on/off). Each
time a list is received, the matrixctrl changes the active inlets and outlets of the
matrix∼.

8.1.2 Pulse generators and reverbs

After the routing of signals in the matrix∼, ten audio signals have become four,
and are at this point sent to the trainjaff subpatches.20 The pulses (the tones,
really) in each voice is made using four train∼s with a very high pulse rate (15-25
seconds) and a variation in how much of the pulse is ‘on’ and how much is silent.
To avoid clicks, the signals are routed through separate rampsmooth∼ objects
using the system sample rate times two (typically 44100x2), meaning there will
two seconds fade in and out for each pulse tone. This is an extreme way to use
rampsmooth∼, but it works well and provides a uniform envelope for the tones.

Below the pulse generator we find the reverbs, where I have simply used the
yafr-patch.21 Though the vst∼ object and an external plugin reverb probably
could have worked better, I quickly became used to the sound of this reverb and
decided on using it.

Since there were four outlets from the matrix∼ and the yafr-reverb has two
each, we are now up in eight channels. After the trainjaffs, channels are indi-
vidually filtered in the deepest frequencies to remove some unwanted rumbling.

20There are three trainjaffs and one trainjafflogic, of which the only difference is that
the latter sends the ‘trainbang’ that controls change in most parameters.

21A patch included with Max. Plate emulation in ‘the style Griesinger’, a name some readers will
associate with Lexicon.

44

This was done using onepole∼ as a high pass filter with the cutoff set to 50 Hz,
which is very gentle. onepole∼ is not a resonant filter.

8.1.3 Sigmoid soft clipper

During development the patch would sometimes peak, especially at times where
the train∼ objects were using a high pulse width, or the matrix∼ were out-
putting many of the inputs. Such effects are in one way desirable since Matrise is
a piece focused around sound masses, process, and digital noise. However, they
should be maintained under control, since they sometimes may ruin an otherwise
good recording or performance. To avoid this I made a soft clipper for the patch,
using gen∼, with the purpose of smoothening out signals that would otherwise
clip and distort. Since a soft clipper is purely a DSP-event, gen∼ seemed like the
proper environment for this. The soft clipper is based on a sigmoid function, which
the WolframAlpha iOS application22 presents like this:

Sigmoid(x) =
1

1 + e−x

After some work this was how the gen∼ adaption looked (figure 8) with the code
output as follows (although gen∼ uses visual programming, it automatically out-
puts the code of the generated object):

int_1 = int(1);

neg_2 = -in1;

pow_3 = pow(e, neg_2);

add_4 = int_1 + pow_3;

div_5 = int_1 / add_4;

sub_6 = div_5 - 0.5;

mul_7 = sub_6 * 2.;

out1 = mul_7;

Notice I had to withdraw 0.5 (sub 6) at the end to have the signal focus around 0,
rather than 0.5, and then multiply by 2 (mul 7) to bring the signal up to a useful
level. See the practical demonstration in the included patch sigmoidpresentat-
ion.maxpat to view the soft clipper in a predictable situation.

22Wolfram Alpha 2014, Wolfram Group LLC http://itunes.apple.com/en/app/
wolframalpha/id334989259?mt=8

45

Figure 8: Sigmoid function in gen∼.

8.2 Sound results

In total I recorded about four hours of 7-10 minute long 8-channel audio segments
made with the patch, while tweaking settings of the patch in between. I consider
this part of CAC, the listening and selecting of material, as important as program-
ming.

In Matrise the patch is the artwork, with much resemblance to a score that,
as I quoted Bowen on earlier [Bow96], remains the same, but the performance
is always different (of course I may change the patch in the future, but so can a
composer working with scores do). A recording derived from the patch, as the
one the were performed and is attached to the thesis, will naturally stay the same.
However, performing this recording again will result in a different performance,
since in such minimal music, every detail becomes transparent. At first I pictured
the piece to be performed at non-typical venues with long, and/or characteristic
natural reverberations, that in traditional musical performance culture would be
considered a very bad place to perform music, like parking garages, caves, subway
stations, etc. A natural reverb of this kind would greatly colour the music, and
change the music into something else.

Matrise was premiered as the 8-channel version, along with five other electronic
and/or electroacoustic compositions, at the concert STILLE LYD - ”Quiet Sounds”

46

2014-04-28 in PACE Studio One in Leicester, UK, curated by Andrew Hill (pro-
gramme notes in section 22).

9 Matrise redux

I was pleased with the technical and musical results achieved with Matrise, but
somehow it seemed as the potential of the basic principle—feeding different in-
puts to a matrix with different outputs—should be explored further, especially in
terms of making something less massive sounding. This was the point of departure
for making the patch Matrise redux, which is used for quickly making polyphonic
variable amplitude drone textures.

Figure 9: Signal path in Matrise redux.

9.1 Programming Matrise redux

9.1.1 Oscillator frequencies

Upon launch, eight oscillators (I’ve used the patch both with tri∼ [Texture 1 and
2] and cycle∼ [Texture 3], and simply changed the objects manually) are set to
random frequencies: 19-319 Hz, with exception of the eighth oscillator, which will
always have it’s random number multiplied by five, meaning it’s frequency will be

47

95-1595 Hz. This has off course no particular effect unless the multiplied number
results in something notably higher than 319 Hz. If, however, the frequency is
significantly higher, the eight oscillator will be experienced as something else—
more special, since the tone will stand out with a significantly higher pitch—than
the other seven. In other words, the eight oscillator will sometimes be special,
sometimes not.

9.1.2 Variable amplitudes

The amplitude variables are set in a similar way as the oscillators. The rand∼ ob-
ject is used for making the amplitudes variable in a randomised way. Of course
oscillators could have been used for this task as well, but I wanted a more ran-
dom sounding texture than the pulsating feel of an LFO. To use an analogy from
analogue synthesisers, I wanted to use something sounding like sample hold for
the VCAs. rand∼ generates a signal varying from -1. to 1., interpolating linearly
from value to value, which occurs at a certain frequency set with a floating num-
ber. In other words, setting 1. as the frequency will make the rand∼ output a new
number at every second. It will, however, slide linearly from number to number.
Setting the frequency to 1000. will make it output a new number every millisec-
ond, which will not allow us to actually hear the amplitude changing, only a buzz,
really the same as pushing a low frequency oscillator up in frequency from ‘signal
range’ to ‘audio range’, having it produce a tone, rather than a pulse.

9.1.3 The matrix

The patch uses an 8x8 matrix, in which the oscillators described above is connected
to the inputs, and the outputs leads to eight *∼ objects which are connected to the
outputs of the rand∼ objects described above. The matrix has a matrixctrl

connected to it, with an algorithm assigned to switch on and of connection points.
In the encapsulated part of the patch (the p above the matrixctrl) is the

‘drawing algorithm’ located. It’s purpose is to generate three elemented lists of
number for the matrixctrl. This matrixctrl, takes list consisting of a num-
bers from 0-7 (horizontal), 0-7 (vertical), and 0-1 (on/off). For the first two ele-
ments, random objects generating 0-7 is used, but instead of using the numbers
directly they ‘draw’ lines on the grid, using the line object: if the random rolls a

48

2 followed by a 5, the line generates the series 2-3-4-5 over a period of time set
randomly (maximum five seconds). The same process is used for drawing both
vertically and horizontally in the matrixctrl. The third number is always either
0 or 1 which decides if the drawer should activate or deactive the points. If the
total output becomes too loud a message is sent that will set the drawer to deacti-
vating points (0), before, after a randomly timed interval, goes back to activating
(1) them again. There is also a gate at the end of the drawing procedure that irreg-
ularly closes and stopping the algorithm from changing connections. Finally, there
is a global timer (outside the encapsulation), set to 90 seconds by default (but user
changeable) that will at this specified interval roll, with a 1/2 chance, to clear all
connection points in the matrix and set new frequencies for the oscillators and for
the amplitude generators (the frequency changes are delayed by a second so the
don’t change in the middle their fade out [all connection changes in the matrix use
a fade in/out timed to a second using the ‘@ramp 1000’ argument]).

9.1.4 Output

The whole idea with this patch was to make something simple, so I did not want
to output all eight channels separately like in Matrise. Feeding out two identical
mono channels as stereo felt to simple though. To get a more interesting signal out-
put I included a simple panning section using one of the Max included panning al-
gorithms from MSP Tutorial 23: MIDI Panning; the ‘constant distance xfade’.23 This
algorithm takes numbers in the range of 0-127, whereas 0 represents left and 127
represents right, to control panning of a signal split into two *∼ objects. To control
them, eight 0-127 drunk objects with a step size of 16 (which is rather high) sets
the panning number, making sure the panning is prominent and properly audible.
The drunks are controlled by irregular bangs based on the procedural drawing
algorithm: every time a connection point is changed, the panning amplitudes also
changes.

23MSP Tutorial 22 http://www.cycling74.com/docs/max5/tutorials/msp-tut/
mspchapter22.html [2014-05-02]

49

9.2 Sound results

The ‘shaking’ sound character caused by the rand∼ objects makes the sound char-
acter in this patch interesting. They were originally sine oscillators, but the sound
became to predictable and transparent. The patch works well with several kinds
of waveforms for sound generation. Matrise redux were used in the all three Texture
pieces.

10 Dronetool

Dronetool is another patch built to make drone textures. Matrise redux and Dronetool
were used simultaneously in the composition of Texture 1 and 2. The idea was to
compose thick, randomised structures of superimposed synth tones.

10.1 Programming Dronetool

Dronetool is the simplest of the main patches in this project. Sound wise (and CPU
wise), it makes up for it’s simplicity using the poly∼ object to load 50 instances
of itself. The patch does not, however, usually use all instances at the same time,
so the number could have been lower, but I wanted to ability to create an intense,
overloading feel. The poly∼ is set up so every time a new tone is created, it is
allocated to the next free voice (up to 50).

The sound source in Dronetool is a combination of four oscillators (the classic
sine, triangle, saw, and square) and a pink noise generator. Every time Dronetool
is instructed to produce a new tone it sets a value for all five sources that are com-
bined into a single, more complex signal (but still a simple, typical synthesiser
tone). A modification of the polyise patch, interpolyise integrates the possi-
bility to morph between different combinations of waveform levels, using the line
object, providing a richer texture by adjustment of synthesis parameter during
the sound, not only in between each sound.

For envelopes, Dronetool uses a simplified envelope generator that is commonly
known as an AR-envelope (contradictory to the ADSR-envelope), made with a
curve∼ that ramps up for attack, waits, and then ramps down for release. These
three values, the length of the attack, sustain, and release, are randomised for each

50

tone, using a combination of random and delay (delay is used for delaying a
bang for a specified amount of time).

A lores∼ (resonant lowpassfilter), which can be omitted, filters the signal.
The cutoff frequency and resonance gain constantly changes, and the gain some-
times peaks which is what creates the ‘screams’ that can be heard in Texture 1 and
2. This sounds noisy in a good and desirable way, but required the use of the
sigmoid.gendsp here as well.

10.2 Sound results

The sound generated with this patch is quite uniform, which is what makes the
patch useful. The morphing of levels in the waveform mixer, and the filter, is
completely required to make it interesting.

51

Part V

Reflection

This part contains reflections upon what was achieved with the work described
in the previous part, and general observations around working with CAC in this
way.

11 Audio as music — Max for composition

This kind of music represents a special kind of utilising audio: the audio is no
longer a representation of music, the audio is the music.

Max is generally a DSP programming tool, widely and commonly used for both
daily and more specialised solutions for synthesis, effects processing, installations,
video arts, performance software, and controllerism. For most users it is probably
not associated with CAC, at least not since the MSP (Max Signal Processing) addi-
tion from 1997. Adding the possibility of audio processing and generation has, for
a majority of the users, made the software mainly an open audio platform.

This is what makes Max a natural composition platform for me, since as a com-
poser, my ‘media’ is sound represented by audio,24 rather than sound represented

24By ‘audio’ in this context I mean sound that is either converted from sound waves to digital or
analogue audio, or the other way around. Oxford Dictionary defititon of audio: ‘Sound, especially
when recorded, transmitted, or reproduced’ [Oxf13].

52

by notes (or a combination of audio and notes, which seems to be a preferred me-
dia for many in my generation of composers). Some propose a difference between
these two approaches:

One might say that while the traditional composer working with tra-
ditional instruments composes using sounds, the electronic composer
composes the sounds themselves. [CG09, 3]

I can understand how such statements are tempting to use, especially in the open-
ing of a book about computer music and sound design. We, the composers of elec-
tronic music, should be careful about claiming property on composing sounds, as
composers writing for acoustic instruments also composes sounds. The action of
combining a bassoon tone with a viola tone is just as much composing a sound
as modulating a sine wave with another sine wave. Second, if electronic com-
posers composes the sound itself, what about all the electronic works based on
recorded sound, the tradition of musique concrète, field recordings, the vast remix
culture, etc? In the early history of tape music, one used a genre separation based
on the sound source—recorded sound; musique concrète, and electronically gen-
erated sound; electronic music—but this separation of tape music soon became
obsolete and unnecessary, since composers started to use both techniques in the
same pieces. Stockhausen’s Gesang der Jünglinge composed 1955-56 is a notable ex-
ample where the composer composes using sound, composes sounds themselves,
and composes using composed sound based on used sound.

In this project the sounds were generated using oscillators (and some noise gen-
erators). Periodic waveforms have since the beginning of electronic music been a
cornerstone and are no less relevant today then in the 50s. A lot of software now al-
lows for the use of custom waveforms, either by drawing them yourself,25 or, with
sample based synthesis, using any sound as a waveform for synthesis. As much
as I find such ways of sound generation interesting, in this project I found the
classis synthesiser waveforms—sine, triangle, saw and square—sufficient as these
waveforms, especially when using the anti-aliased msp-objects (tri∼, saw∼, and
rect∼), sounds good and are well suited as ‘raw material’ for further manipula-
tion and signal processing.

25Especially interesting is the software DIN is Noise by Jagannathan Sampath, which uses
fully real time modifiable Bezier curves for oscillators and literarily everything else. (http:
//dinisnoise.org [2014-05-08])

53

11.1 The concept of a Max patch

A way to view some (my) Max patches is as a musical statement: something that
says something musical, or communicates a musical idea. To bring this idea fur-
ther, I think of the Max patch as a combination of a score and an instrument. All
though the imagined ‘score’ in my patches in some ways are created in real time,
the patch still functions as a score with extremely precise details on how every
piece of the patch is to act.

One find is that the idea of a sound algorithm feels almost identical to the idea
of a musical piece. The sound algorithm will produce a specific kind of sound. The
patch becomes the score, since the programmer is constantly working on adjust-
ments in the patch, and the patch is what communicates the musical idea. Ideas
arise as actual musical results occurs, and the original idea becomes either more
transparent or more defined based on how the idea was first conceived. Like in
Bowen’s tempo measuring experiments, the infrastructural framework is the same
every time, but each performance features a unique presentation of the same idea.

12 Random numbers as data source

The data source used in this project was random numbers, generated in real time
as the compositions came together, as sort of a synthesised data stream, hence the
second part of the title synthesised composition.

For random numbers and decisions, four Max objects are of extra relevance:
random, drunk, decide, and urn. urn (which outputs all possible numbers in a
random order without duplicates) were not used in this project, but random and
drunkwere used to feed random numbers into very many audio and audio related
objects, therefore having a major impact on the final result. random is a simple
object, it has an integer number as an argument, say 100, and will then, every time
banged, output a number within the range of 0-99. The drunk is more complex, it
outputs a number one step next (up or down) to the previous number, or the same
number again. Step size may be set using a second argument. One important
thing to know about drunk is that it almost always starts from the middle of it’s
range, meaning a range of 100 (0-99) with default step size will output either 49
or 50 as the first number. random, drunk, and decide may be further specified

54

with a ’seed’ message, controlling the frequency of reproduced numbers. This
possibility has not been explored in this project, the objects have been used with
their default, ‘flat’ seed. Reproduced numbers are though very useful in musical
composition, since they potentially can be used for easily creating musical relations
using repetitions and contrasts.

The MSP objects noise∼ and rand∼ are also useful random generators, out-
putting random signals rather than data. noise∼ is a white noise generator out-
putting random values between -1. and 1. rand∼ is basically the same object, but
with a frequency inlet where the frequency of new values output may be set (1 Hz
of course being every second, turning it up to the sample rate of the system [typ-
ically 44100 Hz] will make the rand∼ object output white noise in the same way
as noise∼). Note that rand∼ interpolates linearly to the next value.

The decision of using such objects to generate the numerical material for the
compositions is important. In my systems, the numbers only in a small degree
decide what the composition will sound like, but they do control how the sound
producing parts of the system acts. Like written in section 2, the type of numerical
material used does not necessarily decide much of the outcome, since the system
do not care wether it uses numbers from say a gyroscope or stock numbers. In the
case of the gyroscope, which I have experimented with in live electronic setups,26

the gyroscope data itself is not what is interesting (one parameter produced a sig-
nal at -0.001 to 0.001, not outputting much between other than 0.), it is how the data
is used. To make such a signal useful it requires scaling and mapping. Some times,
like in the case of the extremely low signal of -0.001 to 0.001, scaling can make the
original and scaled signal so different that they do not seem relevant to each other
anymore. I believe that my use of randomly generated numbers rather than data
streams and/or controller data is a good illustration of how irrelevant relevant
data can be. The random numbers has no meaning at all, they are arbitrary, and
do not represent anything before they are used for synthesising the sound and the
composition. When they do this, they do exactly what they are intended for, since
the algorithms are carefully calibrated to produce numbers within a range that is
artistically interesting for their destination object.

26Using an iPad with the Cycling ’74 application Mira, which provides access in Max to the iPad’s
gyroscope, accelerometer, touch, etc, via wifi.

55

13 The actual music

13.1 Lack of controllerism

Sound wice, the music in this project share much with a lot of other examples of
contemporary computer realised music. The important difference is located at the
controllerism, or actually in the lack of controllerism. Controllerism is of course
important in live performance, especially improvisation, but is also relevant in
studio and composition situations.

Controllerism is a term referring to hardware and interfaces for controlling
sound producing or sound manipulating hardware or software. At one point
there were electronic controllers based on virtually every musical instrument (like
in the fusion group ‘Steps Ahead’ where Micheal Brecker played a MIDI saxo-
phone, Mike Mainieri played a MIDI vibraphone, both connected to synthesisers,
and Steve Smith played drums fitted with triggers connected to a drum synth.27),
before controllerism entered it’s current phase, which is sort of postmodern con-
trollerism age—anything can be a controller.28

Making a system where there is no controllers brings up two interesting con-
ditions: First, it makes the music acousmatic, since there is no one performing it,
and nothing to look at for the audience. Second, it requires much more prepa-
ration (much performed ‘laptop music’ is often prepared improvisations, using a
software setup with a defined framework), since the piece have to be completely
finished before performing it.

13.2 Musicscapes — sound art

When starting this project, I had no special desire to compose music in a specific
style, other than that I knew it was going to be realised with CAC.29 The style of
the music I ended up with falls within the categories of ‘ambient’ and/or ‘drone’,
which I probably should have expected, since this is one of my fields of interest
in music. The pieces composed have sort of a ‘musicscape’ quality to them, since

27Album: Live in Tokyo 1986, Steps Ahead. NYC Records 1995. Compact disk.
28I once attended a concert were a musician was shaking an artificial sensor equipped palm tree.
29For instance I took a course in OpenMusic to see if the software was relevant to the project,

which it could have been, just as much as Max.

56

they share many features with soundscapes. They were however always intended
as music.

Matrise (the patch) has the ability to be used as a generative, exhibited sound
installation. It can also be started and stopped manually in a concert situation, but
I chose to record the generated audio and bounce it as fixed audio files. There are
three important aspects of this:

• One has the possibility of editing the recordings, removing certain parts,
making adjustment, etc.

• One maintains maximum control over what the audience will hear.

• Related to the above bullet, one decides how long the piece is going to be,
and therefore how long the audience will listen to it.

Generative music shares some aspects with exhibited sound installations. A com-
mon practice in sound installations is that there is a room, where some sort of audio
process is going on. The audience will enter the room, experience the audio, and
then leave the room to continue their visit at the gallery. This means that the artist
has no control over how much time the audience spends on (or in) the installation,
and they may because of this not experience the full artwork. This may be solved
by providing listening instructions, but this may also cause restrictions on how the
audience listens, and therefore also potentially removes a full experience.

A term I encountered during literature searches was what is known as sound
art, which as I read about seemed relevant to my project. Alan Licht defines sound
art as something divided into three categories:

1. An installed sound environment that is defined by the space (and/or
acoustic space) rather than time and be exhibited as a visual art-
work would be.

2. A visual artwork that also has a sound-producing function, such
as a sound sculpture.

3. Sound by visual artists that serves as an extension of the artist’s
particular aesthetic, generally expressed in other media. [Lic07,
16-17]

Based on this, the fixed media presentation of my works are not sound art. Licht’s
three categories all feature an ‘unfixed’ character, something that has a semi-self

57

consciousness it uses for development of itself. If I rigged Matrise as an installation
in a room and left it running it would be in category 1. Since I have recorded and
edited it, it is not a part of Licht’s definition of sound art—it is music.

13.3 Time and form

13.3.1 Real time

Building audio generative Max patches and recording audio from them has the
(dis)advantages of being forced to generate the audio in real time (e.g. creating
60 seconds of audio takes exactly 60 seconds). Being able to activate a patch and
instantly hear the results is, compared to working with DSP some decades ago, a
luxury. Compared to many other workflows though, which can be ‘faster than real
time’, it is slow. Having to manually record audio routed from Max to a DAW,
means it takes a lot of time to generate not exactly much material (remembering
Cope that had 5000 pieces generated during his lunch break, though this was not
DSP). There is of course the possibility of having several ongoing processes on
either one computer, which is not practical when executing complex DSP with
reverbs on a six years old laptop, or on several computers, which is not practical
since in the initial test phase the patch changes all the time and it is much easier
to have just one copy of the patch that all of the modifications are executed on.
Working on several different patches on different computers simultaneously is not
an option either, since my mind simply do not have sufficient multitasking abilities
to do this. On the plus side, working in real time with one process at the time has
the advantage of instantly having the material presented, allowing to also evaluate
the quality of the material in real time, which is positive since this is something that
has to be done anyway. The story do not tell what David Cope did with the 5000
pieces, but I have a hard time imagining he has ever listened to all of them.

13.3.2 Working with form

Intentionally I wanted to produce a system that would compose the form—the
macro level of the piece—using randomised parameters similar to those that were
used for the synthesis, this way creating a ‘synthesised’ form. This became the
approach in Matrise. In the other patches, this approach was abandon and replaced

58

with a more traditional way of working: manually combining pieces of audio to
form a composition. To be able to compose this way, the use of the DAW became
more important than originally planned. It required me to work the same way
as a composer working with recorded sound does, one have to find the sounds,
organise them, and utilise them in an interesting way.

Figure 10: Graphic score (roughly!) showing organisation of audio segments in
Texture 1. The dark bars represent sound made with Dronetool, while the lighter
bars represent sound made with Matrise redux.

Figure 10 shows the layout of audio segments combined to compose Texture 1.
Texture 2 would present a similar score with a few, long bars, while Texture 3 is
made by combining a lot of short, superimposing segments.

14 Finding sounds — objet trouvé?

Working with CAC is related to working with objet trouvé, or found object. The
composer searches for interesting bits of information within the algorithm and,
based on the complexity and restrictions built in the algorithm, the composer
‘never’ know what (s)he will find. Still, in classic objet trouvé art, like the one
by Marcel Duchamp, the objects are usually completely unmodified ordinary or
‘daily’ objects. An algorithm programmed to produce compositional output is not
related to anything daily at all. Translating the term objet trouvé to the fields of
composition and DSP, the practice of field recording is a more natural analogy.
Field recorders tend though to visit locations knowing that the specific location
is going to produce a desired soundscape, like rivers, highways, urban areas, etc.
They look, or listens, for the sound, just like I listen to the sound of the algorithm
to find something interesting, something useful that can become part of a compo-
sition.

59

15 The future of CAC

Allowing myself to make an assumption, I do not believe the future of CAC lies
within mapping of random numbers, as have been my approach. As previously
stated, a problem with CAC is that the computer does not ‘know’ that it is work-
ing with music, which should make us ask the question, if it is composing without
knowing it is composing, is it composing? Further, if the computer ‘knew’ it was
composing, would it compose better music? This thought, combined with future
progression in technology makes it likely that artificial intelligence, machine learn-
ing, and evolutionary and adaptive algorithms will be utilised for composing mu-
sic. I already mentioned David Cope’s ‘Emily Howell’-software, and the feature-
feedback systems of Risto Holopainen. This is possibly only the beginning, and if
so, we are going to have a very exciting future of CAC.

60

Part VI

Conclusion

16 Answering research questions

16.1 Main research question

• How may computer assisted composition assist or stimulate the composition of elec-
tronic music?

I wrote introductory that there was no obvious way of answering this question. In
retrospective, I feel that Part IV and Part V together is one out of extremely many
possible answers to this question. My approach is only one approach, which is
stylistically greatly coloured by my preferences in music, my ‘way’ of using Max
(there are countless ways to use Max, especially with external third party objects,
GEN, and communication with other softwares), the actual use of Max rather than
other software (I truly believe the produced music, and possibly also the content
of the thesis, would have been something completely different if my workflow
was based around SuperCollider or another environment), and countless other
variables that have influenced the project.

I believe, though, that the project is a good example of what is possible to
achieve with CAC, based on little more than curiosity for an unfamiliar field and
the will and interest to work with a master’s project. Ironically, the amount of

61

hours invested in the project could probably, if used for ‘normal’ composing re-
sulted in a lot more music than what I have produced during the project. This
music would though have also been something completely different than the mu-
sic composed, since CAC, as this project has shown, is a tool that can allow the
composer to compose music s(he) would not compose otherwise, since it conveys
a different set of thinking, another way of viewing music.

16.2 Secondary research question

• ‘Where’ in computer assisted composition is the artwork?

This was perhaps a loaded question from me to me. I had a thought about making
musical ‘statements’ in Max, and letting them make sound, based on their own
infrastructural character. This was also what I did, I made situations where pro-
gramming became composition or composition became programming. I think this
attitude towards CAC was what let me make music of the level that I did. By
viewing programming as composition or visa vi, and by this letting the algorithm
not only make the music, but, in fact be the music, the perspective of what one
can expect from it, and what it is possible to create, is more in contact with reality
than if we want to compose masterpieces without effort. The computer’s lack of
the ability to see arts the way we do is what makes them useful exactly for making
arts. David Cope has a wonderful view on this:

He’s [Cope] now convinced that, in many ways, machines can be more
creative than people. They’re able to introduce random notions and
reassemble old elements in new ways, without any of the hang-ups or
preconceptions of humanity. [Bli10]

17 Application of method

Working with a research method was the most difficult part of the project, possibly
since it was the aspect I had the least experience with in advance. Let us recap the
programming steps I sat up in section 6:

1. Form an idea for a procedure

62

2. Define procedure in programming environment

3. Test

4. Evaluate

5. Redefine

6. Record material to DAW

7. Arrange material into musical composition

8. Evaluate process

During work with the programming I often found that step 1. and 2. grew into
each other and became a conjoint step. Even though I had an idea while I sat
down to program, the idea would soon fail, either because I had not planned it in
deep enough detail, or that the programming environment and/or my knowledge
of it had shortcomings with regards to fulfilling it. I would at this point find a new
way of dealing with the function I wanted for the specific patch, which of course
resulted in a different, but nonetheless usually useful output.

Figure 11: Actual workflow.

63

One could also see step 1-5 as a superimposed action, as I often would program,
create, test, evaluate and redefine/redesign as in one action. Figure 11 shows a
better representation of the actual workflow. Looking back, the testing and eval-
uation steps should have been more formalised, ideally organised in a systematic
way, and all the work kept in logs. This could possibly have resulted in finalisation
of more ideas, since very many patches were abandoned at step 2 or 4. The ones
abandoned at step 2 was either impossible to program—due to my programming
skills and/or limitations of Max, or simply lost and forgotten about among the 602
files associated with the project. The ones abandoned at step 4 didn’t turn out as
good as I had imagined, some of them possible also due to too low skills. I am
now, at the end of the project, a much better Max programmer than at the begin-
ning, and some of the abandoned patches (ideas) are probably possible to realise
now. Although I ended up presenting only three patches in the project, the approx-
imately 20-30 abandoned patches played a significant role in the development of
the three presented ones.

The initial idea is often unclear, and do not intuitively tells how much work it
will involve. For example, the main structure in Matrise, with the exception of the
pink noise generating feature and the soft clipper, was done in one day’s work, fol-
lowed by about two weeks of adjustments, calibrations, and listening. Like written
in the section describing the patch, the initial idea was not much more than using
the matrix∼ object. This shows that it is not necessarily the idea that comes first,
or the first idea that ends up being used, but that the musical potential in a work
becomes more transparent during time and work. I have no reason to believe that
this, the changing of ideas as they are explored, is experienced differently for com-
posers working with notes, or any other musicians working in any other way.

18 Synthesised Sound & Synthesised Composition

My title for this work is Synthesised sound & synthesised composition, which obvi-
ously refers to the use of synthesis as sound source, and the artificial generation,
the synthesis, of the composition. But as I quoted Cipriano and Giri on in section
11, in electronic music the composer also composes the sound. Based on this the
title should perhaps be Synthesised composition of sound & synthesised composition,
which is a little too long. The point is, that this way of composing can be viewed

64

as superimposing of composition of synthesis, and composition of composition.
They are not separate entities, they are one element in a way that makes it mean-
ingless to talk about one without mentioning the other. Remove the synthesis and
there is only a stream of numbers. Remove the composition and there is only a
sound generator not creation sound. There is a synthesis of sound, which is the
composition, which is the sound.

65

Part VII

Appendix

19 Bibliography

The bibliography is realised with BibTex-file, formatted in the Alpha-style.
To reduce the amount of visual noise in the bibliography I have avoided unnec-

essary extra words like ‘retrieved from’, ‘access date’, ‘online’, etc, for the online
sources. If the source is retrieved online it will inform the reader with this, simply
by having an included url in a monospaced font, with the access date attached at
the end in brackets.

The access dates are written in the ISO 8601 date format YYYY-MM-DD. Urls
are clickable, however, some sources (like articles retrieved from JSTOR) requires
subscription and/or log ins for further viewing.

References

[Ari11] Christopher Ariza. Two pioneering projects from the early history
of computer-aided algorithmic compositions. Computer Music Journal,
35.3:40–56, 2011. http://hdl.handle.net/1721.1/68626 [2013-
05-29].

66

[Ass98] Gèrard Assayag. Computer assisted composition today. 1st symposium on
music and computers, 1998. http://www.ircam.fr/equipes/repmus
[2013-09-03].

[Bli10] Ryan Blistein. Triumph of the cyborg com-
poser. 2010. http://www.psmag.com/culture/
triumph-of-the-cyborg-composer-8507/ [2012-11-14].

[Bor06] Henk Borgdorff. The debate on research in the arts. Sensuos Knowledge:
Focus on Artistis Research and Development, 02, 2006.

[Bow96] José Antonio Bowen. Tempo, duration and flexibilety: Technique in the
analysis of performance. J. Musicological Research, 16:111–156, 1996.

[Bre06] Jean Bresson. Sound processing in openmusic. 2006. http://www.
dafx.ca/proceedings/papers/p_325.pdf [2014-04-11].

[Bro12] Scott Brown. Response: Who’s afraid of artistic research? ko-
damapixel.com, 2012. http://kodamapixel.com/2012/03/
response-whos-afraid-of-artistic-research/ [2013-05-
10].

[CG09] Alessandro Cipriano and Maurizio Giri. Electronic Music and Sound De-
sign: Theory and Practice with Max/MSP, volume 1. ConTempoNet s.a.s.,
Rome, Italy, 2009.

[Cop91] David Cope. Computers and Musical Style, volume 6. A-R Editions, Inc,
Madison, Wisconsin, 1991.

[Cop97] David Cope. Techniques of the Contemporary Composer. Shirmer Thomson
Learning, USA, 1997.

[Cop00] David Cope. The Algorithmic Composer, volume 16. A-R Editionns, Inc,
Madison, Wisconsin, 2000.

[Hil63] Lejaren Hiller. Electronic music at the university of illinois. Journal of Mu-
sic Theory, 7:99–126, 1963. http://www.jstor.org/stable/843024
[2013-01-16].

[Hof09] Peter Hoffman. Music Out of Nothing? A Rigorous Approach to Algorithmic
Composition by Iannis Xenakis. PhD thesis, Technischen Universität Berlin,
Berlin, 2009. http://hdl.handle.net/1721.1/68626 [2013-01-11].

[Hol12] Risto Holopainen. Self-organised Sound with Autonomous Instruments:
Aesthetics and experiments. PhD thesis, Univeristy of Oslo, Oslo, 2012.
https://www.duo.uio.no/handle/10852/37664 [2014-04-08].

67

[HSV05] Mika Hannula, Juha Suoranta, and Tere Vadén. Artistic Research.
Academy of Fine Arts, Helsinki, Finland & University of Gothenburg
/ ArtMonitor Sweden, 2005.

[Lan89] Peter Langston. Six techniques for algorithmic music composition. 1989.
http://www.langston.com/Papers/amc.pdf [2014-04-11].

[Lic07] Alan Licht. Sound Art: Beyond Music, Between Categories. Rizzoli Interna-
tional Publication Inc, New York, 2007.

[Mur84] Tristan Murail. Spectra and pixies. Contemporary Music Review, Musical
Thought at Ircam:157–170, 1984.

[Mur05] Tristan Murail. Models & Artifice The Collected Writings of Tristan Murail,
volume 24, Parts 2+3, April/June. Routledge. Taylor & Francis Group,
2005.

[OB61] Harry F. Olson and Herbert Belar. Combination random-probability sys-
tem. Radio Corporation of America, USA, 1961. http://www.google.
com/patents/US3007362 [2013-09-3].

[Oxf13] Oxford. Oxford dictionaries. 2013. http://www.
oxforddictionaries.com [2013-10-18].

[Pul02] Ville Pulkki. Compensating displacement of amplitude-panned virtual
sources. AES 22 International Conference on Virtual, Synthetic and Entertain-
ment Audio, pages 186–195, 2002. http://www.acoustics.hut.fi/
research/cat/vbap/papers/pulkkiaes22.pdf [2014-01-28].

[Roa96] Curtis Roads. The Computer Music Tutorial. The MIT Press, Cambridge,
Massachusetts; London, England, 1996.

[Ser93] Marie-Hélène Serra. Stochastic composition and stochastic timbre:
Gendy3 by iannis xenakis. Perspectives of New Music, Vol. 31, no. 1:236–
257, 1993. http://www.jstor.org/stable/833052 [2012-04-02].

[Sow13] John Sowa. A machine to compose music. 2013. http://www.jfsowa.
com/misc/compose.htm [2013-09-02].

[VG04] Øivind Varkøy and Erling Guldbrandsen. Musikk og mysterium. Cappe-
len akademisk forlag, Oslo, Norway, 2004.

[You58] Joseph E. Youngblood. Style as information. Journal of Music Theory, 2:24–
35, 1958. http://www.jstor.org/stable/842928 [2013-10-22].

68

20 Sound examples

Overview of the sound files generated for the project. All tracks mastered by Lars
Erik Sparby.

URL: http://magnusbugge.bandcamp.com/album/sssc

• Matrise (stereo mix).wav [09:08]

• Matrise (8 channel).wav [09:12] [DVD only, accompanied by
Matrisechannelrouting.png]

• Texture 1.wav [05:58]

• Texture 2.wav [03:42]

• Texture 3.wav [04:47]

69

21 File list

Overview of the files uploaded to the github repository. Second level items are files
associated with their imposed first level items. File extensions: maxpat requires
Max to edit, but may be viewed and run with Max Runtime (free), gendsp requires
GEN to edit, but may be viewed with Max or Max Runtime, and gcx requires Mac
OS X Grapher to open.30

Download all: http://github.com/magnusbugge/SSSC/archive/master.
zip
Visit the Github repository: http://github.com/magnusbugge/SSSC

• Dronetool.maxpat

– polyise.maxpat

– interpolyise.maxpat

• LICENSE

• Matrise.maxpat

– gridctrl.maxpat

– hipass.maxpat

– matrisesynth.maxpat

– noisethresh.maxpat

– trainjaff.maxpat

– trainjafflogic.maxpat

• Matrise redux.maxpat

• README.md

• sigmoid.gendsp

– sigmoidraw.gendsp

– sigmoidpresentation.maxpat

– sigmoid.gcx

30Download Max, Max Runtime, and/or GEN from Cycling ’74, http://cycling74.com/
downloads/.

70

22 Attachments

Attachment 1/1: Concert programme from the performance of Matrise.

71

	I Introduction
	II History of computer assisted composition
	III Method
	IV Programming — composing
	V Reflection
	VI Conclusion
	VII Appendix

